THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. ## Armed Services Technical Information Agency Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. Reproduced by DOCUMENT SERVICE CENTER KNOTTBUILDING, DAYTON, 2, 0H10 UNCLASSIFIED SPHERICAL, CYLIPDRICAL AND ONE-DIMENSIONAL FLOWS OF COMPRESSIBLE FLUIDS by Joseph B. Keller This report represents results obtained at the Institute for Mathematics and Mechanics, New York University, under the auspices of Contract Nonr-285(02). ### Spherical, Cylindrical and One-Dimensional Flows of Compressible Fluids Joseph B. Keller #### I. Introduction Relatively few boundary value problems involving spherical or cylindrical flows of compressible fluids have been solved exactly. In order to solve more problems of this type, particularly those involving variable entropy, we have investigated the flow differential equations, at first without regard to initial or boundary conditions. In this way a class of non-isentropic solutions of the differential equations, depending upon an arbitrary function, has been obtained. Then, in the second phase of the investigation, the arbitrary function is adjusted to satisfy particular initial or boundary conditions. In this way the free expansion of a sphere of gas into a vacuum has been treated, as well as the propagation of finite and strong shocks in variable media. The latter treatment includes Primakoff's point-blast solution as a special case. The method of procedure is quite simple. In section II the problem is formulated in Lagrangian variables. In section III a class of solutions is obtained by the method of separation of variables. In section IV these solutions are specialized to isentropic flow. In section V the solutions are applied to the determination of strong shock waves propagating in variable media. In section VI finite shocks in variable media are considered. #### II. Formulation We consider the motion of an inviscid, non-heat-conducting fluid, obeying the polytropic equation of state. The one, two and three dimensional cases will be treated together. In the three dimensional case y(h,t) represents the radius at time t of the particle with the Lagrangian coordinate h, which is defined by the equation (1) $$h = \int_{y(0,t)}^{y(h,t)} r^{n-1} \rho(r,t) dr \qquad n = 1,2,3.$$ In the above equation $\rho(r,t)$ is the density at time t and radius r, and n is the dimension, which is 3 in the spherical case. In the two dimensional case y represents radial distance from an axis, and in one dimension y is a cartesian coordinate. It is further assumed that all flow variables depend upon y and t only and that flow occurs only in the y direction. This is the assumption of spherical, cylindrical or planar symmetry. From the definition of y, the particle velocity u is given by $$u = y_{t} .$$ Similarly from (1) the density ρ or specific volume $\boldsymbol{\mathcal{C}}$ are given by (3) $$r = \rho^{-1} = y^{n-1}y_h$$ Because of our assumptions concerning inviscidity and non-conduction, the entropy s of a particle is independent of time (at least between successive shocks). Thus we have $$(i_{+}) s = s(h) .$$ The function s(h) is given by initial data or by shock conditions, and is assumed to be known. The pressure p is given by the equation of state $$p = p(\rho,s) = g(\boldsymbol{\tau},s) .$$ For a polytropic gas or liquid (6) $$g(\mathbf{r}, s) = g_0 + A(s)\mathbf{r}^{-\gamma}$$ The function A(s), the adiabatic exponent γ , and the internal pressure g_0 are assumed to be known. In terms of the above defined quantities, the equation of motion is (7) $$y_{tt} = -y^{n-1}[g_{z}(y^{n-1}y_h)_h + g_s s_h]$$ For a polytropic gas or liquid this becomes, using (6), (8) $$y_{tt} = \gamma A(s)(y^{n-1}y_h)^{-\gamma-1}(y^{n-1}y_h)_h y^{n-1} - A_h(y^{n-1}y_h)^{-\gamma} y^{n-1}$$. Equation (8) is a second order partial differential equation for y(h,t). The coefficient A is assumed to be a known function of s, and by (h), of h. The problem we consider is that of finding solutions of (8). From a particular solution, the flow variables can be found by using (2), (3), (4) and (5). #### III. Product Solutions Let us seek product solutions of (8) of the form $$y(h,t) = f(h)j(t) .$$ Inserting (9) into (8), and separating variables we obtain $$\mathbf{j}^{n} - \lambda \mathbf{j}^{\mathbf{n}(1-\gamma)-1} = 0$$ (11) $$-A[(f^{n-1}f')^{-\gamma}]'f^{n-2} - A'(f^{n-1}f')^{-\gamma}f^{n-2} = \lambda .$$ In these equations λ is an arbitrary separation parameter and primes represent derivatives with respect to t in (10) and with respect to h in (11). To solve (10) we multiply by j' and intograte, obtaining (12) $$\frac{1}{2}(j')^2 - \frac{\lambda}{n(1-\gamma)} j^{n(1-\gamma)} = \frac{1}{2}a \qquad (\gamma \neq 1)$$ (13) $$\frac{1}{2}(j') - \lambda \log j = \frac{1}{2}a$$ $(\gamma = 1)$ Here a is an integration constant. Thus, unless j is constant, which is possible only if $\lambda = 0$ or j = 0, we have the solution (14) $$\int_{-\infty}^{j} \left[\frac{2\lambda}{n(1-\gamma)} j^{n(1-\gamma)} + a \right]^{-1/2} dj = t \quad (\gamma \neq 1)$$ The integration constant in $(1l_{+})$, (15) has been set equal to zero without less of generality since it merely shifts the origin of time. To solve (11) we differentiate out and obtain (16) $$\gamma A[f'''f^{n-1} + (n-1)f^{n-1}(f')^2](f^{n-1}f')^{-\gamma-1}$$ $$- f^{n-2}(f^{n-1}f')^{-\gamma} A' = \lambda$$ We now consider the inverse function h = h(f) and denote h'(f) by q(f). Then (16) becomes (17) $$\gamma A[-q'q^{-3}f^{n-1} + (n-1)f^{n-2}q^{-2}][f^{n-1}q^{-1}]^{-\gamma-1}f^{n-2} + f^{n-2}[f^{n-1}q^{-1}]^{-\gamma}A'(h) = \lambda$$ We shall first treat the case $\gamma \neq 1$ by introducing z(f) and B(f) defined by (18) $$z = q^{\gamma-1}$$, $B(f) = A[h(f)]$. With these definitions, (17) becomes (prime denoting differentiation with respect to f) (19) $$z' + z[-(n-1)(\gamma-1)f^{-1} + \frac{\gamma-1}{\gamma} (\log B)']$$ $+ \frac{\lambda(\gamma-1)}{\gamma^{\frac{n}{2}}} f^{(n-1)(\gamma-1)+1} = 0$ An integrating factor of (19) is $f^{-(n-1)(\gamma-1)}B^{\frac{\gamma-1}{\gamma}}$ and the solution is (with G a constant) (20) $$\mathbf{z} = \mathbf{f}^{(n-1)(\gamma-1)} \mathbf{g}^{\frac{1-\gamma}{\gamma}} \left[\mathbf{G} - \frac{\lambda(\gamma-1)}{\gamma} \int_{\mathbf{r}}^{\mathbf{f}} \mathbf{f} \mathbf{g}^{-1/\gamma} d\mathbf{f} \right]$$ Thus we have q from (18) and (20), and finally since h' = q, (21) $$h = \int_{-\infty}^{f} f^{n-1}B^{-1/\gamma} \left[G - \frac{\lambda(\gamma-1)}{\gamma} \int_{-\infty}^{f} fB^{-1/\gamma} df \right]^{\frac{\gamma}{\gamma-1}} df + E$$ Here E is an integration constant. Equation (21) gives f(h) implicitly, and thus provides a solution of (11) for $\gamma \neq 1$. The solution may be written more simply by defining F(f) by (22) $$F(f) = \left[G - \frac{\lambda(\gamma-1)}{\gamma} \int_{-1}^{f} f B^{-1/\gamma} df\right]^{\frac{\gamma}{\gamma-1}}$$ If $\lambda \neq 0$ this can be solved for B(f) and yields (23) $$B(f) = (-\lambda f)^{\gamma} (f')^{-\gamma} F$$ The solution for the flow variables can now be computed from (2)-(5), (7), (21), (22). We have for $\gamma \neq 1$ and $\lambda \neq 0$, remembering that $f = yj^{-1}$ from (9), $$(24) u(y,t) = yj'j^{-1}$$ (25) $$\tau(y,t) = -\lambda y j^{n-1} / F'(y j^{-1})$$ (26) $$p(y,t) = g_0 + j^{-n\gamma} F(yj^{-1})$$ Equations (24)-(26) give the flow quantities. In fact, these expressions yield a solution of the Eulerian equations of motion for an arbitrary function F provided that j(t) is given by (14). This is the first main result of this paper. It is to be noted that in these solutions, u is proportional to y. In the excluded case $\gamma \neq 1$, $\lambda = 0$ we have instead of (24)-(26) from (2)-(5), (9), (21) (27) $$u(y,t) = yj'j^{-1} = yt^{-1}$$ (28) $$\mathbf{z}(y,t) = j^{n}B^{1/\gamma}(yj^{-1})G^{\frac{1}{1-\gamma}} = t^{n}b(yt^{-1})$$ (29) $$p(y,t) = g_0 + j^{-n\gamma} G^{\frac{\gamma}{1-\gamma}} = g_0 + \ell t^{-n\gamma}$$ The new arbitrary function b and arbitrary constant $\mathcal L$ have been introduced and the expressions simplified by using (14), which gives (30) $$j(t) = a^{1/2}t .$$ The corresponding solutions when $\gamma = 1$ are obtained from (17) by introducing B(f) as in (18), after which (17) becomes (31) $$q'q^{-1} - (n-1)f^{-1} + \frac{B'}{B} + \frac{\lambda f}{B} = 0$$ The solution of (31) is (32) $$q(f) = f^{n-1}B^{-1}(f) \exp \int_{-\lambda}^{f} -\lambda f B^{-1}(f) df$$. Thus (33) $$h(f) = \int_{0}^{f} \left[f^{n-1}B^{-1}(f) \exp \int_{0}^{f} -\lambda f B^{-1}(f) df \right] df + E$$ Equation (33) yields the solution implicitly. Again we define (34) $$F(f) = \exp \int_{-\lambda fB^{-1}(f)df}^{f} -\lambda fB^{-1}(f)df .$$ Then if $\lambda \neq 0$ we have (35) $$B(f) = -\lambda f F(F')^{-1}$$ The solution for the flow variables, if $\gamma = 1$ and $\lambda \neq 0$, is again given by (24)-(26) with $\gamma = 1$ and j(t) given by (15). Similarly for $\gamma = 1$ and $\lambda = 0$ the solution is given by (27)-(29) with $\gamma = 1$, G = 1 and j(t) given by (30). Equations (24)-(26) and (27)-(29) represent nonisentropic solutions of the flow equations depending upon an arbitrary function. In order to construct these solutions explicitly one need merely evaluate the integrals in (14) or (15). Some special cases of these integrals yield results which are listed below for later use. (36) $$j(t) = \left\{ \left[\frac{2\lambda}{n(1-\gamma)} \right]^{1/2} \left(\frac{n(\gamma-1)+2}{2} \right) t \right\}^{\frac{2}{n(\gamma-1)+2}}$$ if $\gamma \neq 1$, $a = 0$, $\frac{n(\gamma-1)}{2} \neq -1$ (37) $j(t) = e^{\pm \lambda^{1/2} t}$ if $\gamma \neq 1$, $a = 0$, $\frac{n(\gamma-1)}{2} = -1$ (38) $j(t) = \frac{\lambda}{2} t^2 + \alpha t + \beta$ if $n(1-\gamma) = 1$, α , β arbitrary. #### IV. Isentropic Case The above solution can be specialized to the isentropic case by setting A = B = constant. Then from (22) and (34) we obtain (39) $$F(f) = \left[G - \frac{\lambda(\gamma-1)}{2\gamma B^{1/\gamma}} f^{2}\right]^{\frac{\gamma}{\gamma-1}} \qquad \gamma \neq 1$$ (40) $$F(f) = \exp \frac{-\lambda f^2}{2B} \qquad \gamma = 1$$ Thus the solutions given by (24)-(26) become, for $\gamma \neq 1$ and $\lambda = 0$ (41) $$u(y,t) = yj'j^{-1}$$ (42) $$\mathcal{Z}(y,t) = j^{n_B 1/\gamma} \left[g - \frac{\lambda(\gamma-1)}{2\gamma^B^{1/\gamma}} y^2 j^{-2} \right]^{\frac{-1}{\gamma-1}}$$ (43) $$p(y,t) = g_0 + j^{-n\gamma} \left[g - \frac{\lambda(\gamma-1)}{2\gamma\beta^{1/\gamma}} y^2 j^{-2} \right]^{\frac{\gamma}{\gamma-1}}$$. In these solutions B and G are constants and j is given by (14). For $\lambda = 0$, and all γ the solution (27)-(29) applies with b constant. For $\gamma=1$ and all λ , (41) is unchanged, but the other equations become (44) $$\mathcal{C}(y,t) = j^n B \exp \frac{-\lambda j^{-2} y^2}{2B}$$ (45) $$p(y,t) = g_0 + j^{-n} \exp \frac{\lambda j^{-2} y^2}{2B}$$ Here B is a constant and j is given by (15). As an example of these isentropic solutions, let j(t) be given by (36) and assume G=0 in (42), (43). Then (41)-(43) yield the power solutions (if $\gamma \neq 1$, $\frac{n(\gamma-1)}{2} \neq -1$) (46) $$u(y,t) = \frac{2}{n(\gamma-1)+2} yt^{-1}$$ (47) $$z(y,t) = \left[\frac{\gamma 3}{n} \left(\frac{n(\gamma-1)+2}{\gamma-1}\right)^2\right]^{\frac{1}{\gamma-1}} (yt^{-1})^{\frac{-2}{\gamma-1}}$$ (48) $$p(y,t) = g_0 + B \left[\frac{\gamma B}{n} \left(\frac{n(\gamma-1)+2}{\gamma-1} \right)^2 \right] \frac{\gamma}{1-\gamma} (yt^{-1})^{\frac{2\gamma}{\gamma-1}}$$ #### V. Application: Strong Shocks In Variable Media Let us suppose that a shock given by the equation y = R(t) moves into a variable medium of density $\rho_0(y)$, pressure $\rho_0(y)$ and velocity zero. The pressure $\rho_0(y)$ and velocity $\rho_0(y)$ and density $\rho_0(y)$ just behind the shock are related to the corresponding quantities in front of it by the shock conditions. These conditions are (49) $$\frac{\rho}{\rho_0} = \frac{(\gamma+1)p + (\gamma-1)p_0}{(\gamma-1)p + (\gamma+1)p_0} \approx \frac{\gamma+1}{\gamma-1}$$ $(\gamma \neq \pm 1)$ (50) $$u = \frac{2(p - p_0)}{\left[2\rho_0[(\gamma+1)p + (\gamma-1)p_0]\right]^{1/2}} \approx \left[\frac{2p}{(\gamma+1)\rho_0}\right]^{1/2}$$ (51) $$\dot{R} = \left[\frac{(\gamma+1)p + (\gamma-1)p_0}{2\rho_0}\right]^{1/2} \approx \left[\frac{(\gamma+1)p}{2\rho_0}\right]^{1/2}$$ The second expressions on the right apply to a strong shock, for which $p >> p_{\cap}$. We shall now assume that the flow behind the shock is a "product" solution given by (24)-(26), and that the shock is strong. We wish to determine the functions $F(yj^{-1})$, R(t), $\rho_0(y)$ and $\rho_0(y)$ for which such a solution is possible. To this end, we insert (24)-(26) into (49)-(51) and obtain (52) $$\frac{F'(Rj^{-1})}{-\lambda Rj^{n-1}\rho_{0}(R)} = \frac{\gamma+1}{\gamma-1}$$ (53) $$\frac{Rj'}{j} = \left[\frac{2g_0 + 2j^{-n\gamma}F(Rj^{-1})}{(\gamma+1)\rho_0(R)}\right]^{1/2}$$ (54) $$\dot{R} = \left[\frac{(\gamma+1) \{g_0 + j^{-n} \gamma_F(Rj^{-1})\}}{2\rho_0(R)} \right]^{1/2}$$ From (53) and (54) we have (55) $$\frac{\dot{R}}{R} = \frac{(\gamma+1)}{2} \frac{j'}{j} .$$ Thus (56) $$R(t) = R_0[j(t)]^{\frac{\gamma+1}{2}}$$ Inserting (56) into (53) and making use of (12), satisfied by j(t), we find (57) $$F(x) = \frac{\gamma+1}{2} \rho_{o} \left(x^{\frac{\gamma+1}{\gamma-1}} R_{o}^{\frac{2}{1-\gamma}} \right) \\ \cdot \left[\frac{2\lambda}{n(1-\gamma)} (xR_{o}^{-1})^{-2n} + D \right] R_{o}^{\frac{-2n\gamma}{\gamma-1}} x^{\frac{(2n+2)\gamma-2}{\gamma-1}} - g_{o} (xR_{o}^{-1})^{\frac{2n\gamma}{\gamma-1}}.$$ Thus R is determined, F is related to ρ_0 , and (53), (54) are satisfied, although R_0 , D, and λ are still arbitrary. We now insert (56), (57) into (52) to determine F. We obtain, if $g_0 = 0$, (58) $$F(x) = F_0 x^n \left[\frac{2\lambda R_0^{2n}}{\ln(1-\gamma)} + Dx^{2n} \right]^{-1/2}$$ From (57) and (58) we then find (59) $$\rho_{o}(R) = \frac{2F_{o}R_{o}^{\gamma-1}}{\gamma+1} \left[\frac{2\lambda R_{o}^{2n}}{n(1-\gamma)} + DR_{o}^{\gamma+1} \frac{2n(\gamma-1)}{\gamma+1} \right]^{-3/2}$$ $$\frac{(n-2)\gamma-3n+2}{\gamma+1} \frac{2(n-2)\gamma-6n+4}{R_0(\gamma+1)(\gamma-1)}$$ In (58) and (59) F_0 is an arbitrary constant. The corresponding results with $g_0 \neq 0$ are somewhat more complicated. We have thus obtained a solution with a strong shock moving into a variable medium at rest, with density given by (59). The constants F_0 , R_0 , λ and D are arbitrary in this equation, but only two essential combinations of these constants occur. The shock curve is given by (56), and j(t) by (14). The flow is given by (24)-(26) with F(x) given by (58). The flow might be produced by a piston following one of the particle paths $$(60) Y(t) = Y_0 j(t) .$$ The solution was deduced for $\gamma \neq \frac{1}{2}$ and $\lambda \neq 0$. As an example of these solutions, let us suppose that $\rho_0(R)=$ constant. From (59) we find that this requires (61) $$p = 0$$, $\gamma = \frac{3n-2}{n-2}$. The last condition can be fulfilled only for n=3, in which case $\gamma=7$. (n=1 leads to $\gamma=-1$, which was excluded in the derivation, and n=2 yields no value of γ .) In this case we have from (14), (58) (62) $$j = \left[\frac{5\sqrt{-\lambda}}{3}t\right]^{1/10}, \quad F(x) = x^3 \frac{3F_0R_0^{-n}}{\sqrt{-\lambda}}$$ The solution computed by using (62) in (2h)-(26) (with λ < 0) is exactly the point blast solution of Taylor's type first found by H. Primakoff, #### VI. Application: Finite Shocks In Variable Media We may apply the above method to determine finite shocks in variable media. Then we must satisfy the exact shock conditions (49)-(51) rather than the strong shock conditions. Inserting (24)-(26) into (49)-(51) yields with $g_0 = 0$ (63) $$\frac{F'(x)}{-\lambda R j^{n-1} \rho_0} = \frac{(\gamma+1) j^{-n} \gamma_F + (\gamma-1) \rho_0}{(\gamma+1) \rho_0 + (\gamma-1) j^{-n} \gamma_F}, \quad x = R j^{-1}$$ (64) $$Rj'j^{-1} = \frac{j^{-n\gamma_{F}} - p_{o}}{\sqrt{\frac{\rho_{o}}{2}[(\gamma+1)j^{-n\gamma_{F}} + (\gamma-1)p_{o}]^{1/2}}}$$ (65) $$\dot{R} = \frac{1}{\sqrt{2\rho_0}} [(\gamma+1)j^{-n\gamma}F + (\gamma-1)p_0]^{1/2}$$ Equations (63)-(65) are a set of two first order ordinary differential equations and one algebraic equation for the determination of the four functions F(x), R(t), $p_o(R)$ and $p_o(R)$. Equation (14) gives j(t). This system is evidently underdetermined and will have infinitely many solutions. In the strong shock case, however, p_o did not occur and thus the system was determined. To solve the above system we could impose some relation between p_0 and ρ_0 and eliminate both these functions by means of that relation and (64). A pair of simultaneous first order equations for F(x) and R(t) would result. However these equations can be treated separately since, from (64) and (65) we have by eliminating F, (66) $$\dot{R} = \frac{\gamma+1}{4} R j' j^{-1} \pm \left[\frac{(\gamma+1)^2}{16} (R j' j^{-1})^2 + \gamma p_0 \rho_0^{-1} \right]^{1/2}$$ This is an equation for R(t) if the ratio $p_0 p_0^{-1}$ is given as a function of R. (Equation (66) also holds when $g_0 \neq 0$.) After solving this, (63) can be solved for F, and then p_0 and p_0 can be obtained. We will now investigate the shock curve R(t) given by (66), in the special case in which j(t) is given by (36) with C=0 and $\gamma p_0 \rho_0^{-1}=c_0^2$ is constant. The latter assumption means the temperature ahead of the shock is constant. Making use of (36), (66) becomes (67) $$\dot{\mathbf{R}} = \frac{\gamma+1}{2[n(\gamma-1)+2]} \bar{\mathbf{R}} t^{-1} \pm \left[\frac{(\gamma+1)^2}{4[n(\gamma-1)+2]^2} (Rt^{-1})^2 + c_0^2 \right]^{1/2}$$ If we now introduce $T(t) = Rt^{-1}$ in (67) we obtain an equation for U in which the variables separate. One solution is the constant solution (68) $$U = \pm c_0 (1 - \frac{\gamma + 1}{n(\gamma - 1) + 2})^{-1/2}$$ In this case, which is physically possible only when $\frac{\gamma+1}{n(\gamma-1)+2} < 1$, the shock curve is the straight line (69) $$R = Ut = \pm c_0 \left(1 - \frac{\gamma + 1}{n(\gamma - 1) + 2}\right)^{-1/2} t .$$ When U does not have the value given by (68), the equation for U yields (70) $$\int_{U_{0}}^{U(t)} \left\{ \left(\frac{\gamma+1}{2n(\gamma-1)+l_{+}} - 1 \right) U \right\} dU = \log \frac{t}{t_{0}}$$ Integrating (70) yields (71) bt = $$\left| \frac{1}{2} a + (a-1)\cos \theta \right|^{\frac{1-a}{2a-1}} \left(\sin \frac{\theta}{2} \right)^{\frac{-1}{a^{\frac{1}{2}a-1}}} \left(\cos \frac{\theta}{2} \right)^{\frac{1}{2}a-a+1}$$ Here $\theta = \cot^{-1} \frac{aU}{c_0}$, $a = \frac{\gamma+1}{2n(\gamma-1)+4}$ and b is a constant. Thus we have (72) $$R = Ut = \frac{c_0}{ab} \cdot bt \cot \theta$$ Since bt is given in terms of θ by (71), R(t) is given parametrically in terms of θ . A graph of $\frac{ab}{c_0}R$ versus bt is given in Figure 1 for n=3 and $\gamma=1.4$, which represents a spherical shock in air. When the minus sign is chosen in (67)-(71) the same curves are obtained as with the plus sign, provided t is replaced by minus t. For small values of t we have (73) $$R \approx Kt^{2a}$$ where K is a constant. For $\gamma = 7$ and n = 3 we find a = $\frac{1}{5}$ and thus R $\sim t^{2/5}$, which is the behavior of Primakoff's point blast solution for small t. For large t, R behaves linearly in t, as in (69). To determine p_0 and F, we have from (65) and the condition $\gamma p_0 \rho_0^{-1} = c_0^2$, (74) $$F = \frac{2\rho_{c}\dot{R}^{2} - (\gamma-1)p_{o}}{(\gamma+1)j^{-n\gamma}} = \frac{2\gamma p_{o}}{(\gamma+1)c_{o}^{2}}\dot{R}^{2}j^{n\gamma} - \frac{\gamma-1}{\gamma+1}p_{o}j^{n\gamma}$$ Thus, if dot denotes time derivative and prime denotes derivative of a function with respect to its argument, we have (75) $$\dot{\mathbf{f}} = \frac{2\gamma}{(\gamma+1)c_0^2} (p_0^{\dagger}\dot{\mathbf{R}}^3 \mathbf{j}^{n\gamma} + 2p_0\dot{\mathbf{R}}\dot{\mathbf{R}}\mathbf{j}^{n\gamma} + n\gamma p_0\dot{\mathbf{R}}^2 \mathbf{j}^{n\gamma-1}\mathbf{j}') - \frac{\gamma-1}{\gamma+1} (p_0^{\dagger}\dot{\mathbf{R}}\mathbf{j}^{n\gamma} + n\gamma p_0\mathbf{j}^{n\gamma-1}\mathbf{j}') = \mathbf{F}'(\dot{\mathbf{R}}\mathbf{j}^{-1} - \mathbf{R}\mathbf{j}^{-2}\mathbf{j}') .$$ Using (74), (75) in (63) yields the following equation for p_0 $$(76) \left[\frac{2\gamma}{(\gamma+1)c_{o}^{2}} (p_{o}^{\dagger}\dot{R}^{3}j^{n\gamma} + 2p_{o}\ddot{R}\ddot{R}j^{n\gamma} + n\gamma p_{o}\dot{R}^{2}j^{n\gamma-1}j') \right]$$ $$- \frac{\gamma-1}{\gamma+1} (p_{o}^{\dagger}\dot{R}j^{n\gamma} + n\gamma p_{o}j^{n\gamma-1}j') \left[-\lambda Rj^{n-1}\gamma p_{o}c_{o}^{-2}(\dot{R}j^{-1} - Rj^{2}j') \right]^{-1}$$ $$= 2\gamma c_{o}^{-2}\dot{R}^{2} \left[\gamma+1 + \frac{(\gamma-1)2\gamma\dot{R}^{2}}{(\gamma+1)c_{o}^{2}} - \frac{(\gamma-1)^{2}}{\gamma+1} \right]^{-1} .$$ Upon introducing $\dot{p}_{o} = p_{o}'\dot{R}$, the above equation can be integrated yielding $p_{o}[R(t)]$ as a function of t. To obtain $p_{o}(R)$, we must insert t = t(R) from (71), (72) into this result. Then when $p_{o}[R(t)]$ is known, F can be found from (74). These calculations will not be carried out here. #### VII. Free Expansion and Other Problems In this section some flows described by the preceding "product" solutions will be discussed. First, let us consider the flow given by (41)-(43) with $g_0 = 0$. This describes the isentropic flow of a gas. If j'(0) = 0, it starts from rest. If the constant G is chosen so that p = 0 for some value of yj-1, then p remains zero for this value of yj-1, which therefore represents a "free" surface of the gas. Thus the flow represents the free expansion of an isentropic gas into vacuum. The equation of the free surface is $y = \frac{y_0}{1(0)}$ j(t), where y_0 represents the location of the free surface at t = 0. In a similar way (24)-(26) may represent the free expansion into vacuum of a gas with initially variable entropy, provided $g_0 = 0$ and $F(yj^{-1})$ vanishes for one value of its argument. For certain choices of j(t), this solution can also represent the collapse or expansion of a hole, or the initial contraction of a sphere of gas toward the origin due to an initial inward motion, followed by momentary rest and subsequent expansion. When g is not zero, similar motions of a liquid are described. #### VIII. Other Solutions In the preceding sections product solutions of (3) were considered. In this section two other kinds of solutions will be examined. First, let us assume that $$(??) y = f(at + \beta h) .$$ Here e and & are constants. We find for the flow quantities (78) $$u = y_{+} = \alpha \dot{f} = c \dot{f} [f^{-1}(y)]$$ (30) $$p = A\rho^{\gamma} = A(\alpha\beta^{-1}y^{2-n}u^{-1})^{\gamma}$$. We see that the flow quantities are independent of t, or in other words, that a solution of the form (77) yields steady flows. Inserting (?7) into (8) yields (81) $$a^{2}\ddot{\mathbf{r}} = \gamma \mathbf{A}(\beta \mathbf{r}^{n-1}\dot{\mathbf{r}})^{-\gamma-1}(\beta \mathbf{r}^{n-1}\dot{\mathbf{r}})'\beta \mathbf{r}^{n-1} + \mathbf{A}_{\mathbf{h}}(\beta \mathbf{r}^{n-1}\dot{\mathbf{r}})^{-\gamma}\mathbf{r}^{n-1}$$ Since f is a function of ct+ β h and t doesn't appear in (31), h cannot appear either. Thus A is constant and $A_h = 0$. Now if x denotes the argument of f, and if we consider the inverse function x(f), we obtain from (51) the following equation for $q(f) \equiv \dot{x}(f)$ (32) $$-\alpha^2 \dot{q} q^{-3} = \gamma A (\beta f^{n-1} q^{-1})^{-\gamma-1} (-\beta f^{n-1} \dot{q} q^{-3} + \beta (n-1) f^{n-2} q^{-2}) \beta f^{n-1}$$ This equation is exact and yields upon integration (83) $$br^{(1-\gamma)(n-1)}q^{\gamma-1} + \frac{1}{2}q^{-2} = D$$, $b = \frac{\gamma A \beta^{1-\gamma}}{a^2(\gamma-1)}$, $\gamma \neq 1$ (84) $$\frac{a^2}{2}q^{-2} + A \log q = (n-1)Af + D$$, $\gamma = 1$. Here D is a constant. From (78) and the facts that $f = q^{-1}$, f = y, we have (95) $$u = \frac{c}{q(\overline{y})}.$$ Thus the steady solutions are obtained from the algebraic equation (83) or (84). A more interesting type of solution is given by (86) $$y = t^{a}f(K(h)t)$$ Here a is a constant, and f,K are functions to be determined. These solutions are like the type considered by Guderly, Taylor, von Neumann and Calkin and Courant and Friedrichs. Inserting (96) into (8) yields (97) $$(a-1)at^{a-2}f + 2akt^{a-1}\dot{f} + k^2t^{a}\dot{f}$$ $$= \gamma h \left[t^{an+1}r^{n-1}\dot{k}\dot{f} \right]^{-\gamma-1}t^{a(n-1)}r^{n-1}t^{an+1}$$ $$\left[r^{n-1}\dot{r}\ddot{k} + r^{n-1}\dot{k}^2t\ddot{f} + (n-1)\dot{k}^2\dot{f}^2tr^{n-2} \right]$$ $$+ A_h t^{a(n-1)}r^{n-1}\left[t^{an+1}r^{n-1}\dot{k}\dot{f} \right]^{-\gamma}.$$ In order that h occur in this equation only in the combination x = K(h)t, we find the following expressions for K(h) and A(h) (35) $$K = \left(3h + c\right)^{\frac{1}{1-\epsilon}}, \quad A = DKY^{-1}K^{C+1}.$$ Here $\alpha = an(1-\gamma)-\gamma-2\alpha+2$, D is a constant and A is constant if $\epsilon(\gamma-1)+\alpha+1=0$. Under these conditions, (87) becomes (39) $$(s-1)af + 2axf + x^{2}f = x^{\alpha}f^{(n-1)(1-\gamma)}f^{-\gamma}D$$ $$\left[\gamma\left(\varepsilon + \frac{xf}{f} + \frac{(n-1)xf}{f}\right) + \varepsilon(\gamma-1) + \varepsilon + 1\right]$$ To reduce (89) to a first order equation, we follow von Neumann and Calkin, by letting $\delta = (\alpha + \gamma)[2 + n(\gamma - 1)]^{-1}$ and $$(90) x = e^{S}, f = e^{S}F$$ Then (89) becomes $$(71) \quad (a-1)aF + 2a(\frac{d}{ds} + \delta)F + (\frac{d}{ds} + \delta - 1)(\frac{d}{ds} + \delta)F$$ $$= F^{(n-1)(1-\gamma)} \left[(\frac{d}{ds} + \delta)F \right]^{-\gamma} \mathbb{D} \left[\gamma \varepsilon + \frac{\gamma(\frac{d}{ds} + \delta - 1)(\frac{d}{ds} + \delta)F}{(\frac{d}{ds} + \delta)F} \right]$$ $$+ \frac{\gamma(n-1)(\frac{d}{ds} + \delta)F}{F} + \varepsilon \gamma - \varepsilon + c + 1$$ If we now let $q = (\frac{d}{ds} + \delta)F$ we obtain a first order equation for q in terms of F. $$(92) \left[1-\gamma DF^{(n-1)(1-\gamma)}q^{-\gamma-1}\right](q-\delta F)\dot{q}$$ $$= F^{(n-1)(1-\gamma)}q^{-\gamma}D[\gamma \varepsilon + \gamma(n-1)qF^{-1} + \varepsilon \gamma + \alpha + 1 - \varepsilon] - (\alpha-1)\alpha F - 2\alpha q.$$ Special cases of this equation have been studied by von Neumann and Calkin. ## Armed Services Technical Information Agency Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. # AD NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. Reproduced by DOCUMENT SERVICE CENTER KNOTTBUILDING, DAYTON, 2, OHIO UNCLASSIFIED